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In 3D thin-film batteries (3D-TFBs) and in trenched capacitors, the surface area is increased by forming
holes in a substrate such as a silicon wafer. In this paper we define area gain (AG) as a ratio of the
total new surface area (including the surface areas of all the holes) to the original surface area of the
substrate (“footprint”). We analyze the AG for different configurations of convex polygonal holes within
the substrate. In most cases, the AG can be computed based on the P/S ratio, where P is the sum of all
D
hin-film
atteries
apacitors

hole perimeters and S is the surface area of one side of the substrate. Assuming that the diameter of each
hole is not less than D and that the distance between any two holes is not less than s, the P/S ratio never
exceeds 4/(D + 2s). Tesselation of the surface into a regular grid of polygonal cells of diameter D + s with
regular polygonal holes of the same form (of diameter D) results in P/S = 4D/(D + s)2. We propose two
alternative tessellations (one with regular square holes and another with regular triangular holes) which
have P/S ratios slightly better than 4D/(D + s)2 and which satisfy the assumptions of the hole diameter

ound
and the wall width. It is f

. Introduction

Three-dimensional (3D) thin-film batteries [1–3], also referred
o as “3D TFBs”, are a new class of batteries that combine the
ower advantages of planar (2D) TFBs with more that an order of
agnitude increase in areal and volumetric energies and capac-

ties vs. such planar TFBs. A 3D TFB is fabricated on a substrate
erforated with an array of through-holes having a high aspect
length-to-diameter) ratio. Typically, the aspect ratio is 10:1. In

configuration in which a full battery is formed in each hole,
hin films are deposited conformally on all available surfaces, see
ig. 1. The final structure is one of tens of thousands of concen-
ric microbatteries per cm2, connected in parallel. Rechargeable
i-ion 3D TFBs have been fabricated on glass (microchannel plates)
nd silicon substrates and testing has proved their vastly supe-
ior performance per cm2 “footprint” relative to state-of-the art
D TFBs [4–7]. A recent paper reviews the literature on both 2D
nd 3D TFBs and evaluates their potential use as power sources for
mplantable medical devices [8]. It is notable that in addition to
he development of conformal deposition techniques which use

ssentially wet chemistry (electroless and electrodeposition), as
one in Refs. [2–8], a group at Philips is pursuing the fabrica-
ion of 3D TFBs in non-through-holes using vacuum deposition
essentially CVD) techniques [9,10]. The following is described
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that a smoothed triangular tessellation provides the largest AG.
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with reference to a silicon substrate (also referred to as wafer or
chip).

Since the improvement in “performance per footprint” is
strongly related to the aspect ratio and the geometrical arrange-
ment of the through-holes, the aim of this study was to find the
form and the arrangement of holes that maximizes the surface area,
under the condition that this configuration can be implemented in
practice. Practical constraints imposed by the fabrication process
include:

• The hole diameter needs to be sufficiently large to allow free
flow/insertion of liquids (or polymers used as separators) used
in the deposition processes.

• The surface of the hole walls needs to be “sufficiently smooth” so
that the layers are uniform in thickness.

• There is a lower bound on the possible width of the wall between
two adjacent holes and between a hole and the substrate edge.

The notion of area gain (AG) is introduced to measure the effi-
ciency of each configuration. The AG is defined as the ratio of the
useful surface to the area S of one (top or bottom) side of the sub-
strate. The substrate is assumed to be a flat plate and S is the area
of one of its sides. The “useful surface” depends not only on the

form of the substrate, but also on the form and configuration of
the holes and on the location of the layers. For example, if a full
substrate (without holes) is used and layers are deposited only on
one of its sides, then AG = 1. If both sides are used, AG = 2. If lay-
ers are deposited also on the border of the wafer/chip, then the

dx.doi.org/10.1016/j.jpowsour.2010.08.059
http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
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side of the silicon plate, which is exactly the definition of S given
earlier.

In order to maximize the P/S ratio, we first establish for it an
upper bound under the assumption that walls can be arbitrarily
thin, then check the case in which the width of the walls is at least
Fig. 1. Structur

rea gain equals (2S + Ld)/S = 2 + Ld/S, where L is the perimeter of the
afer/chip and d is the hole length (equal to the substrate thickness

n the case of through-holes).

. Formalization of the problem

When vertical holes are formed in a planar substrate, the addi-
ional “internal” hole surface area on which battery layers can be
ormed equals Pd, where P is the sum of perimeters of all the holes.
he ratio between this internal area and the area S equals (P/S)d. If
nly the walls of the holes are covered with cathode/anode layers,
hen AG = (P/S)d. If the remaining planar surface of the substrate
s also covered with cathode/anode layers, the AG increases. It is
lso possible to create non-penetrating holes (as in the silicon sub-
trates in [9]), leaving a thin layer of silicon parallel to the surface,
ig. 2, in which case AG = (2S + Pd)/S = 2 + (P/S)d. In both cases, for a
xed d, the AG can be computed using the P/S ratio. Therefore, our
oal is to find the configuration and the form of holes that max-
mizes the P/S ratio under the constraints listed above. Since it is
ifficult to formalize these requirements in a unique way, we will
onsider the following formalization: The holes are convex poly-
ons with a specified minimal diameter D (diameter of a circle
hich can be placed inside the polygon). The diameter is chosen to

llow the free flow of liquid. A “sufficiently uniform” distribution
f the deposited material is ensured since the walls of the convex
olygon are smooth. There is a minimal inter-hole wall width s,
hich means that the distance between any two points of any two
olygons is at least s. We also require that the distance between
ny polygon and the substrate edge be at least s/2. In fact, the esti-

ates on the P/S ratio obtained for convex polygons will hold for

rbitrary convex holes that satisfy the same constraints, because
ny convex object can be approximated by convex polygons to an
rbitrary degree of precision.

ig. 2. Non-penetrating holes: a thin substrate section parallel to the surface is left
nside each hole.
Fig. 3. Possible configurations of polygonal holes.

2.1. Convex polygonal holes

Fig. 3 illustrates a possible configuration of polygonal holes in
the substrate. For any configuration that satisfies the requirement
that the minimal wall width is not less than s, we can tessellate
the silicon surface into a set of closed cells with walls of width
not less than s/2, as shown in Fig. 4. S is the sum of areas of all
the cells in the tessellation. Since the whole silicon area is cov-
ered by cells, the sum of areas of all cells equals the area of one
Fig. 4. Tessellation of a substrate surface into a set of closed cells with walls of width
not less than s/2.
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depends on the area SH of the hole. The smaller SH, the higher the
ig. 5. (a) Circle of diameter D. (b) Triangle with inscribed circle of diameter D.
c) Square with inscribed circle of diameter D. (d) Hexagon with inscribed circle of
iameter D.

. Before we begin the analysis of the whole tessellation, it is helpful
o study the P/S ratio for a single cell.

.2. P/S ratio for a convex polygonal cell

Consider a convex polygon which contains a circle of diameter D
Fig. 5a). We first find the P/S ratio for this circle and for some simple
olygons, see Fig. 5a–d. The polygons are: (a) a circle of diameter
: P0 = �D, S0 = (�/4)D2, P0/S0 = 4/D; (b) a triangle with an inscribed
ircle of diameter D: P3 = 3

√
3D, S3 = (3

√
3/4)D2, P3/S3 = 4/D; (c)

square with an inscribed circle of diameter D: P4 = 4D, S4 = D2,
4/S4 = 4/D; and (d) a hexagon with an inscribed circle of diame-
er D: P6 = 2

√
3D, S6 = (

√
3/2)D2, (P6/S6) = 4/D; In Appendix A, we

rove the following results (Lemmas 3 and 4):

For a regular polygon with inscribed circle of diameter D and
perimeter P, P/S = 4/D.
For a convex polygon containing a circle of diameter D, P/S ≤ 4/D.
For a convex polygon containing a circle of diameter D, the equal-
ity P/S = 4/D holds if and only if the polygon is formed by lines
tangent to the circle.

.3. P/S ratio for tiling with convex polygons

We now compute an upper bound for tessellation (“tiling”) of
silicon wafer to cells, such that every cell contains a convex

olygonal hole of at least internal diameter D. We start with the
ssumption that it is possible to create infinitely thin walls. In this
ase, P equals the sum of the perimeters of all the holes, and S is
reater than or equal to the sum of the areas of all the holes. Then,
y Lemma 5 in Appendix A we have P/S ≤ 4/D.

.4. Non-zero width walls

Next, we consider tessellations where the distance between two
eighboring holes is at least s, and where the distance from any hole
o the substrate edge is at least s/2. As we already noted earlier, in

his case, the substrate surface can be subdivided (tesselated) into
ells, such that each cell contains one convex polygonal hole and
he distance from any point of the hole to the border of the cell is
t least s/2.

ig. 6. (a) Polygonal hole. Dashed lines are located at the distance s/2 from the hole
alls. (b) A strip of width s/2 around the polygonal hole.
Fig. 7. (a) A polygon that has lines tangent to the circle. (b) A convex polygon that
has sides tangent to the circle.

2.5. P/S for a cell

Next, we consider cells with a convex polygonal hole and walls
of width not less than s/2, where a circle of diameter D can be
placed inside the hole. Let P denote the perimeter of the hole,
SH the hole area, and S the cell area. Then, as seen in Fig. 6a, we
have S ≥ SH + P(s/2). By Lemma 4 in Appendix A, we have P/SH ≤ 4/D.
Applying Lemma 6, we get P/S ≤ 4/(D + 2s).

It is possible to provide a tighter estimate. For a given con-
vex polygonal hole, the cell of the least area is the cell whose
boundary consists of all points at distance less than or equal to
s/2 from the hole. Since the area of the cell is minimal, the P/S
ratio is maximal (for a given specific hole). Fig. 6b is a strip of
width s/2 around a convex polygon. Consider an arbitrary vertex
in this polygon. Denote the inner angle by ˛. Then, the angle,
which is marked in black in Fig. 6b, is 360 − ˛ − 90 − 90 = 180 − ˛.
The sum of all the inner angles of a convex N-sided polygon is
(N − 2) · 180 ◦. Consequently, the sum of all the angles in Fig. 6b is∑N

i=1(180 − ˛i) = N · 180◦ −
∑N

i=1˛i = 360◦. Therefore, the area of
all the black sectors in Fig. 6b is �(s/2)2 and S = SH + P(s/2) + �(s/2)2.
Consequently, the best P/S ratio for any cell with convex polygonal
hole of perimeter P is P/S = P/(SH + P(s/2) + �(s/2)2). By Lemma 4,
we have P/SH ≤ 4/D. Therefore, SH ≥ PD/4. When we substitute
it into the P/S estimate, we get P/S ≤ P/((PD/4) + P(s/2) + �(s/2)2).
Thus, P/S ≤ 4P/(P(D + 2s) + �s2). An equivalent expression is
P/S ≤ (4/(D + 2s))(1 − ((�s2)/(P(D + 2s) + �s2))). In this form, we see
that this estimate is tighter than P/S ≤ 4/(D + 2s), because the
expression in the brackets is always less than 1.

In summary, for a cell which consists of a convex polygonal hole
of perimeter P and walls of exact s/2 width, we have the following
results:

• P
S ≤ 4

D+2s
• P

S = P

SH+P(s/2)+�(s/2)2

• P
S ≤ 4P

P(D+2s)+�s2 or equivalently P
S ≤ 4

(D+2s)

(
1 − �s2

P(D+2s)+�s2

)
.

We see that the right-hand side of the second result (equality)
P/S ratio.
How small can SH be made for a fixed P? From Lemma 4, we

know that P/SH ≤ 4/D, that is SH ≥ PD/4. From the same lemma we
know that P/SH = 4/D when the polygon is formed by lines tangent

Fig. 8. Three possible regular tessellations of the plane: Left: hexagons. Middle:
squares. Right: triangles.
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Fig. 9. Cell configurations based on the tessellations in Fig. 8.
524 A. Averbuch et al. / Journal of P

o the circle. We claim that for any perimeter P > �D, we can find
uch a polygon. Although we give no formal proof, we provide an
rgument why this is true. Indeed, for an arbitrary P > �D, we can
orm Fig. 7a, which has a perimeter P–ε for a small positive ε. Then,
e can build a convex polygon with sides which are tangent to the

ircle of the form shown in Fig. 7b with perimeter P (this claim is
eft without formal proof). This means that for any P > �D, we can
nd a convex polygon which contains a circle of radius D such that
/S = P/((PD/4) + P(s/2) + �(s/2)2) = 4P/(P(D + 2s) + �s2), which shows
hat the estimate P/S ≤ 4P/(P(D + 2s) + �s2) for a single cell is tight.

e get P/S = 4/((D + 2s) + (�/P)s2). It is easy to see that when P → ∞
he P/S ratio converges to the familiar “coarse” estimate 4/(D + 2s).

.6. P/S for tessellation

Once we have an estimated P/S ratio for a single cell, we analyze
he P/S ratio of the whole tessellation. As noted earlier, the substrate
urface can be subdivided into cells such that each cell contains
ne convex polygonal hole with an inner diameter of at least D.
he distance from any point in the hole to the border of the cell
s at least s/2. Suppose that there are N cells in this subdivision.

e enumerate them and denote by Pi the perimeter of the polygon
ontained in the ith cell, by SH

i
the area of the polygon, and by Si the

rea of the ith cell. Above, we showed that Pi/Si ≤ 4/(D + 2s) for any
∈{1, ..., N}. Then, by Lemma 2 in Appendix A we get the estimate
/S ≤ 4/(D + 2s), where P =∑N

i=1Pi is the sum of the perimeters of

ll the holes and S =∑N
i=1Si is the sum of the areas of all the cells,

.e. the total substrate area on one side.
Now we estimate the P/S ratio for the whole tessel-

ation based on a tight estimate of the P/S ratio for a
ingle cell P/S ≤ 4P/(P(D + 2s) + �s2). Using an equivalent form
or an estimate of a single cell, we conclude that Pi/Si ≤
4/(D + 2s))(1 − ((�s2)/((D + 2s)Pi + �s2))) ≤ (4/(D + 2s))(1 −{ }

(�s2)/((D + 2s)max

i
Pi + �s2))) for any i ∈{1, ..., N}. Applying

emma 2, we conclude that P/S ≤ (4/(D + 2s))(1 − ((�s2)/((D +
s) · max

i
{Pi} + �s2)), or equivalently that P/S ≤ (4max

i
{Pi})/((D +

s)max
i

{Pi} + �s2). This estimate shows that 4/(D + 2s) is not a tight

Fig. 11. P/S ratio and AG for squa
Fig. 10. (a) Triangle with inscribed circle of diameter D and walls of width s/2. (b)
Square with inscribed circle of diameter D. (c) Hexagon with inscribed circle of
diameter D. (d) Circle of diameter D.

bound, because max
i

{Pi} is a finite number bounded from above by

the perimeter of the silicon substrate.
In summary, we have two estimates for the P/S ratio for a hole

configuration where each hole is a convex polygon with an inner
diameter at least D, where the distance between two holes is at
least s and where the distance from any hole to the substrate edge
is at least s/2:

• P
S ≤ 4

D+2s

• P
S ≤ 4

D+2s

(
1 − �s2

(D+2s)·max
i

{Pi}+�s2

)
.

In fact, these estimates are valid for any convex hole that satisfies
the requirements on the wall width and the inner diameter, because
any such hole can be approximated by a convex polygon.

re tiling: s = 10, d = 500 �m.
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Fig. 12. P/S ratio and AG for

. Analysis of different configurations

Next, we compare a number of hole configurations to the upper
ound derived above. It is well known that there are three pos-
ible regular tessellations of the plane: triangles, squares and
exagons—see Figs. 8 and 9. The term “regular” denotes a tessella-
ion by cells that satisfy the following requirements: each cell is a
egular polygon, the “hole” is a regular polygon of the same form as
he cell but smaller (since walls are not zero width), and all cells are
qual. The term “smoothed” with reference to tessellation denotes

ells that satisfy the following requirements: each hole is a regular
olygon but the cell external boundary is not a regular polygon any-
ore. It consists of points located at the distance s/2 from the hole.

n other words, we take the “hole” and perform a morphological

Fig. 13. P/S ratio and AG for squa
re tiling: s = 15, d = 500 �m.

operation of “opening” using a circle of diameter “s”. The exter-
nal boundary of the resulting cells has smooth corners, as seen in
Figs. 14a, 15a and 16a. The union of the cells with smoothed corners
does not cover the whole silicon surface. Union of these cells does
cover the whole silicon surface.

We consider cell configurations which are based on these tessel-
lations and shown in Fig. 10. These are: (a) triangle with inscribed
circle of diameter D and walls with width s/2: P3 = 3

√
3D, S3 =

(3
√

3/4)(D + s)2, P3/S3 = 4D/((D + s)2); (b) a square with inscribed
circle of diameter D: P4 = 4D, S4 = (D + s)2, P4/S4 = 4D/(D + s)2; (c)√

a hexagon with inscribed circle of diameter D: P6 = 2 3D, S6 =
(
√

3/2)(D + s)2, (P6/S6) = (4D)/((D + s)2); and (d) a circle of diame-
ter D: P0 = �D, S0 = (�/4)(D + s)2, P0/S0 = 4D/((D + s)2). Note that the
same P/S ratio holds for the smallest convex figure that contains a

re tiling: s = 20, d = 500 �m.
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Fig. 14. (a) Square hole and the cell with the minimal area. (b) Cell with a P/S ratio
larger than the P/S ratio of the cell used for regular tiling.
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Fig. 17. Computation of the P/S ratio for this configuration.

tiling is shown in Fig. 17. For this tiling, it is easy to show that

P = 4D and S = (D + s)2 − s2((
√

2 − 1)/
√

2)
2

and that the P/S ratio

is P/S = (4D)/((D + s)2 − s2((
√

2 − 1)/
√

2)
2
) = (4D)/((D + s)2 −√ 2 √
ig. 15. Two different arrangements for tessellation of the plane using more of the
ptimal cells.

ircle of radius D, i.e. the circle itself plus walls of s/2 width. Since
essellations considered by us consist of identical cells, the P/S ratio
quals (4D)/(D + s)2 for any of them. Let us see how far this P/S ratio
s from the upper bound on the P/S ratio derived in Section 2.6. We
lot graphs of P/S ratio as a function of D ∈ [25, 100] for s = 10, 15,
0 in respectively Figs. 11–13. Based on the P/S ratio, we can com-
ute the AG of a given hole configuration by multiplication of the
/S ratio by d. For illustration, the graphs plotted in these figures
re for AG when d is 500 �m. The dotted line in the graph repre-
ents the P/S ratio (4D)/(D + s)2, the dash-dot line is the upper bound
4)/(D + 2s) and the continuous line is the “tight bound” for all tes-
ellations where the perimeter of each hole is less than or equal to
D. One can clearly see that all regular tessellations are equivalent.

Let us consider a square hole and a cell with the minimal
rea (their walls are exactly s/2 thick), Fig. 14a. The P/S ratio of
his cell is larger than the P/S ratio of the cell used for regu-
ar tiling, Fig. 14b. Indeed, in the first case we have P = 4D and
= D2 + 4D(s/2) + �(s/2)2 = D2 + 2Ds + (�/4)s2, whereas in the second
ase we have P = 4D and S = (D + s)2. The question is whether we can

essellate the plane using more of these optimal cells.

We consider the arrangement of these cells shown in Fig. 15a.
he configuration of the holes is the same as in the regular tiling, but
here is a space that is not covered by cells near the corners. The

ig. 16. (a) Fragment of the tiling in (b). (b) Cell for the tiling given in Fig. 17.
Fig. 18. Configuration of “smoothed triangular” cells for which the P/S ratio is better
than that of a regular tessellation. The walls are exactly s/2 thick. Note that there
areas that do not belong to any cell near cell corners.

P/S ratio for this hole arrangement can be computed as the ratio
between the perimeter of a hole and the sum of the areas which is
computed as the area of the cell plus the area of the non-filled area
near the corner.

Now we consider another arrangement, shown in Fig. 15b. Here
the non-filled area is smaller. Therefore, the P/S ratio is higher than
in the regular tiling case, although it is smaller than the P/S ratio of
a single cell. Following is a formal proof that this hole configuration
is better than a regular tessellation.

Fig. 16a is a fragment of this tiling. The diameter of the small
circles is s. First, we find the vertical displacement of the cells.
It is not hard to compute it as that the vertical displacement
is s(

√
2 − 1)/(

√
2). Then, we get the same hole configuration by

tiling the plane with cells of the form shown in Fig. 16b. The
s2(( 2 − 1) /2)) = (4D)/(D2 + 2Ds + s2( 2 − 0.5)).

Fig. 19. Tiling of the plane by cells with the same configuration of holes as in Fig. 20.
Unlike in Fig. 18, there are no non-filled areas near cell corners. The walls are at least
2/s thick.
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Fig. 20. P/S ratio and AG for smoothed

Since
√

2 − 0.5 < 1 we have D2 + 2Ds + s2(
√

2 − 0.5) < (D + s)2,
herefore P/S = (4D)/(D2 + 2Ds + s2(

√
2 − 0.5)) > (4D)/(D + s)2.

The configuration of smoothed square holes provides a higher
/S ratio than any “regular tessellation” which satisfies the same
equirements, i.e. has holes with internal diameter “D” and inter-
ole distances not less than “s”. Figs. 20–22 show plots of the P/S
atio of “square” and “smoothed square” tessellations.

.1. Smoothed triangle tessellation
We can use the above approach to find a tessellation based on
riangular holes in which the P/S ratio is better than that provided
y a regular tessellation. It will also be better than that provided by
he smoothed square tessellation.

Fig. 21. P/S ratio and AG for smoothed squar
e and triangle cells: s = 10, d = 500 �m.

We consider regular triangular holes and a cell with min-
imal area (with walls exactly s/2 thick). Then, we consider
the cell arrangement shown in Fig. 18. This arrangement is
not a tiling, since there are areas not covered by cells near
the smoothed corners of the triangular cells. However, we
can get the same hole configuration by tiling the plane with
cells with the form shown in Fig. 19. For one cell, we have
P = 3

√
3D and S = (3

√
3/4)(D + s)2 − (s2/(2

√
3)). Therefore,

P/S = 4D/((D + s)2 − (2/9)s2). We compare this to the smoothed
square tiling, where P/S was (4D)/((D + s)2 − s2((
√

2 − 1)/
√

2)
2
).

We note that (
√

2 − 1/
√

2)
2 ≈ 0.0858 where 2/9 ≈ 0.2222.

That is, P/S = (4D)/((D + s)2 − (2/9)s2) ≥ (4D)/((D + s)2 −
s2((

√
2 − 1)/

√
2)

2
). We get a better P/S ratio than that received in

e and triangle cells: s = 15, d = 500 �m.
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Fig. 22. P/S ratio and AG for smoothed squ
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lateral triangles. Each triangle has a “central” angle equal
to 360/N degrees, and two angles near the base equal to
Fig. 23. Illustration for the proof of Lemma 4.

he smoothed square case. All of this is shown in the comparison
harts in Figs. 20–22, which plot the P/S and the AG for three
onfigurations: regular square tessellation, smoothed square
essellation and smoothed triangle tessellation.

In conclusion, the smoothed triangle tessellation produces the
est AG for all compared configurations. It is important to remem-
er that all these comparisons were made under the assumption
hat a minimal hole size is determined by the diameter of the
nscribed circle. If in practice, smoothed square holes with internal

iameter X can be fabricated and smoothed triangular holes can
lso be fabricated with internal diameter Y > X, then, it is possible
hat the smoothed square cells will produce a larger area gain.

Fig. 24. Illustrations for th
are and triangle cells: s = 20, d = 500.
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Appendix A.

Lemma 1. Let Pi, Si i ∈{1, 2}, be positive numbers such that
P1/S1 ≤ P2/S2. Then, P1/S1 ≤ (P1 + P2)/(S1 + S2) ≤ P2/S2.

Lemma 2. Let N be a positive integer, P1, . . ., PN and S1, . . ., SN

are positive numbers. We define P =∑N
i=1Pi and S =∑N

i=1Si. Then,
there exists k, l ∈{1, . . ., N} such that Pk/Sk ≤ P/S ≤ Pl/Sl.

Lemma 3. For any regular polygon with an inscribed circle of
radius D, the ratio between the perimeter and the area is 4/D.

Proof: Consider a N-side polygon. We connect each ver-
tex to its center, thus dividing the polygon into N equi-
(180 − (360/N))(1/2) = 90 − (180/N). Denote R = D/2. Then, the area
of each triangle equals St = R2ctg(90 − (180/N)). Then, the area
of this polygon is S = NR2ctg(90 − (180/N)). The base of each

e proof of Lemma 4.
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riangle equals 2Rctg(90 − (180/N)), therefore, the perimeter
= 2NRctg(90 − (180/N)). Then, the ratio between the perimeter and

he area of the polygon is P/S = 2/R = 4/D.

emma 4. For a convex polygon that contains a circle of diameter
, the ratio between the polygon perimeter P and the polygon area
satisfies P/S ≤ 4/D. This equality holds if and only if the polygon is
ounded by lines tangent to the circle.

Proof: We connect the center of the polygon to its vertices thus
ividing it into triangles, see Fig. 23. Assume that the polygon has
sides. We enumerate these sides and denote the length of the ith

ide by Pi. The area of the ith triangle is denoted by Si The straight
ine Li, which contains the ith side of a polygon, cannot intersect the
nscribed circle. Indeed, the circle is located inside the polygon. It
s known that a convex polygon lies completely in one of the half-
lanes to which Li divides the plane. Now, if we consider a line that
asses through the center of the circle and is orthogonal to Li, two
ases are possible: either the line crosses the ith side or not. We
enote by Ri the distance from the center of the circle to Li. Case 1

s shown in Fig. 24a and case 2 is shown in Fig. 24b.
In case 1, Si = (RiP

1
i

/2) + (RiP
2
i

/2) = (RiPi/2). In case 2, Si =
Ri(Pi + P1

i
)/2) − (RiP

1
i

/2) = (RiPi/2). Therefore, in any case we have
i/Si = 2/Ri. Now, Ri ≥ D/2 and, therefore, 1/Ri ≤ 2/D. Then, for any
∈{1, . . ., N} we have Pi/Si ≤ 4/D. The perimeter of the polygon is
=
∑N

i=1Pi and the area of the polygon is S =
∑N

i=1Si. By Lemma
, there exists j ∈{1, . . ., N} such that P/S ≤ Pj/Sj. Consequently,
/S ≤ 4/D. In the case when the polygon is bounded by lines tan-
ent to the circle, we have Ri = D/2 for all i ∈{1, ..., N}, therefore,
i/Si = 4/D for all i ∈{1, ..., N}. By Lemma 2, there exists k, l ∈{1, . . .,
} such that Pk/Sk ≤ P/S ≤ Pl/Sl. Consequently, P/S = 4/D. Now, sup-
ose that at least one line that bounds the polygon is not tangent
o the circle. Then, there exists k ∈{1, . . ., N} such that Pk/Sk < 4/D.
hen, PkD < 4Sk. Taking into account that PiD ≤ 4Si for all i ∈{1, ..., N},
e have P1D + ... + PND < 4S1 + ... + 4SN, that is P/S < 4/D.
emma 5. Let N be a positive integer. Consider N convex polygons
uch that every polygon contains a circle of radius D. We enumerate
hem. We denote by Pi the perimeter of the ith polygon and by Si

he area of the ith polygon. We define P =
∑N

i=1Pi (total perimeter

[
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of all polygons) and S =
∑N

i=1Si (total area of all polygons). Then,
P/S ≤ 4/D.

Proof: By Lemma 2, there exists j ∈{1, . . ., N} such that P/S ≤ Pj/Sj.
Since all the polygons in the tiling are convex and contain a circle
of radius D, we get from Lemma 4 that Pi/Si ≤ 4/D for any i ∈{1, . . .,
N}. Therefore, P/S ≤ 4/D.

Lemma 6. Let P, S, SH, D and s be positive numbers, such that
P/SH ≤ 4/D and S ≥ SH + P(s/2). Then, P/S ≤ 4/(D + 2s).

Proof: Since S ≥ SH + P(s/2), we have P/S ≤ P/(SH + P(s/2)).
From the inequality P/SH ≤ 4/D, we get PD ≤ 4SH ⇒ PD + 2Ps ≤
4SH + 2Ps ⇒ P(D + 2s) ≤ 4(SH + P(s/2)) ⇒ P/(SH + P(s/2)) ≤ 4/(D + 2s).

Lemma 7. Let N be a positive integer, P1, ..., PN and S1, ..., SN be
positive numbers such that Pi/Si ≤ 4/D holds for any i ∈{1, . . ., N}.
Let C1, ..., CN be numbers such that Ci ≥ Si + Pi(s/2) for any i ∈{1, . . .,
N}. We define P =

∑N
i=1Pi and S =

∑N
i=1Ci. Then, P/S ≤ 4/(D + 2s).

Proof: From Lemma 6, Pi/Ci ≤ 4/(D + 2s) for any i ∈{1, . . ., N}. By
applying Lemma 2 we get P/S ≤ 4/(D + 2s).
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